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r. SUMMARY

We-show'fthat a sum of dependent random variables is approximately

compound Poisson when the variables are rarely nonzero and, given they

are nonzero, their conditional distributions are nearly identical. -We

give several upper bounds on the total-variation distance between the

distribution of such a sum and a compound Poisson distribution. Included

is an example for Markovian occurrences of a rare event. Our bounds are

consistent with those that are known for Poisson approximations for sums

of uniformly small random variables. (,-_.
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1. Introduction

There have been a number of studies on Poisson approximations for

sums of uniformly small random variables. Of paramount interest is the

total-variation distance between a sum of random variables and a Poisson

variable. The total-variation distance between two probability measures

(distributions) F and G on some measurable space is defined by

(1.1) d(F,G) = supBIF(B) - G(B)I,

where the supremum is over all measurable sets (2d(F,G) is the total

variation of the signed measure F-G). The total-variation distance

between random elements X and Y with the respective distributions F and G

is d(X,Y) = d(FG).

Building on the works of Hodges and Le Cam (1960), Le Cam (1960),

Franken (1964) and Freedman (1974), Serfling (1975) proved this result:

If Xl,...,X n are non-negative integer-valued random variables adapted to

the increasing a-fields {Ff}O , then

(1.2) d( E XiN) 4 Z [E (p + Elpi - Epil + P(Xi , 2)],

L i=l i=l

where pl= P(Xi IM Fii) and N is Poisson with mean Zn Ep1 . Comparable

bounds for other Poisson approximations appear in Barbour and Eagleson

(1983), Brown (1983), Chen (1975), Kabanov et al. (1983), Kerstan (1964),

Valkeila (1982) and their references. Such bounds are useful for proving

limit theorems for random variables and point processes as well.

In this paper, we present analogues of (1.2) for compound Poisson

approximations for sums. We consider sums of random elements that take

.1
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values in a measurable group S: the group operation, addition, is

measurable. If X is a random element of S with the compound Poisson

distribution H(B) E Fn* (B)a ne-a/n!, then we say X is CP(a,F). If X
n-0

has the distribution EH(.), where a or F are random, then we say X is

mixed CP(a,F).

Here is our main result. Let X.',...,X be random elements of S

n
adapted to the increasing c-fields IFiJi=O, and define

pi P(X 0 F Fi(B) - P(Xi BI Fi_1 , Xi  0).

Let F be a distribution on S with F({O})= 0, and define, by (1.1), the

random distance dim d(Fi,F) (Fi is random but F is not).

n
Theorem 1. If Z is mixed CP( E pi,F), then

i=l

n n
(1.3) d( E XiZ) - E[ (di + pi-l i-l ":

n
If Z is CP( E aF) where - E theni-lt ai EPi, the

n n
(1.4) d( E XiZ) ( E E (di + 1p, -al + 21.

•i-I i-l-

If Z is CP(a,F), then

n n n
(1.5) d( Z XiZ) ( E[ I (di + p2) + I I - all.

i-I i-l i-l

n
This result says, roughly, that Ei.=X is approximately compound

Poisson when the X 's are rarely nonzero (the p's are small), and given

ithat the X Is are nonzero, their conditional distributions F, ...,F
n

C'..2

.'. .~ ~ . *..j ~.p -- - ~ .-. . -q - . . - -.- .- -.- . .-
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n

are nearly identical. Note that (1.5) with a Z El a is different from
i~l "

(1.4); in some cases the bound in (1.4) is smaller than that in (1.5) but

in other cases the reverse is true.

For the degenerate distribution F on R with unit mass at 1, Theorem

1 yields bounds for Poisson or mixed Poisson approximations for sums. In

this case, (1.4) is the same as (1.2), and (1.5) is consistent with the

inequalities of Brown (1983) and Kabanov et al. (1983),

which were established by martingale techniques.

Brown (1983) also obtains compound Poisson approximations for

certain discrete variables via Poisson approximations. This approach,

however, does not apply to the general case. We prove our results by

rather direct arguments based on judicious conditioning and the use of

(1.1) as a random distance for random distributions. Our approach also

brings to light the key role of the F i's.

From its proof, one can easily see that Theorem I is also true when

the number of variables n in the sum is a stopping time of IFi1 . For

instance, Theorem 1 applies to sums of the form EN(t)Xi where

N(t) = 1I(ti  t) and T < 2 < ... are stopping times of the increasing

a-fields {F(t)} and F, - F( i), respectively. Theorem I also holds when

F and a are random; the Z in (1.4) and (1.5) would then be mixed compound

Poisson.

The rest of this paper is organized as follows. Section 2 gives

some basics on the total-variation distance, Section 3 consists of the

proof of Theorem 1, and Section 4 gives an example for Markovian

occurrences of an event.

................................ .... .. . ..-. :
*'- .-.. *." -.-- . -''; ' ?'' . . .. -. .. ...... ...........- .,,, ,, ,-... . . . %%. ** , - .
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2. Basic Inequalities for Distances

Let X and Y be random elements of some measurable space. A

well-known coupling inequality is

(2.1) d(X,Y) < P(X * Y).

The X,Y in the probability are the random elements -- with an arbitrary

dependency - defined on a common probability space. Inequality (2.1)

follows because P(XeB) 4 P(X*Y) + P(YcB).

It is natural for us to analyze d(X,Y) in terms of conditional

probabilities. Accordingly, we sometimes refer to X as having a

distribution EF(*) where F is a random distribution. Typically,

F(B) -P(X c BIF), or F could be defined as a measurable function of

random elements.

Lemma 2.1. Suppose X and Y have the respective distributions EF(.) and

EG(.), where F and G are random distributions. Then

(2.2) d(X,Y) < E[d(F,G)].

In case F(B) - P(XcBIF) and G(B) - P(YeBIG), for some a-fields F and G,

then

(2.3) d(X,Y) < E[d(F,G)] ( E[P(X * YIF,G)].

Proof. Expression (2.2) follows since

d(X,Y) = supBIEF(B) - EG(B)j < SuPBEIF(B) - G(B)j = E[d(F,G)].

Expression (2.3) follows from (2.2) and a random version of (2.1).

Remark. Keep in mind that F,G in the expectation in (2.2) are the random

distributions on a common probability space and their dependency is

arbitrary. A similar comment applies to the X,Y,F,G in the probability

in (2.3).

. .% .-
* ..

: . ~...,.....,'...... . ....-..-. .. .
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Distances involving functions of random elements, such as sums or

maxima, can generally be represented as D - d(h(X),h(Y)), where

X -(X 1,...,X) Y =(Y 1 .. Y and h is a measurable function from the

range space of X and Y to some other measurable space. Here are some

bounds on this distance.

n
Lemma 2.2. (1) D 4 d(XY). (ii) D 4 E P(K1 *Y 1

(iii) if X 1,** Xn are independent and Y 1l'Yn are independent,

n
then D 4 E d(X 1 Y1)

i-i

(iv) If X1,., are adapted to the increasing a--fields IF}1 and

Y l" 'Ynare adapted to the increasing a-fields {G }J= and

Fi(B) -P(Xi c Bin) Gi(B) - ( c BIGi) then

n n
(2.4) D -C E[ Z d(Fi,Gi)1 4 E[ P(X~ Yi~ Fii, Gi1l).

Proof. Statement (i) is true since

D =sup iP(h(X) E B) -P(h(Y) c £

=sup~i( e h (B)) - P(Y e h (B))! 4 d(X,Y).

Statement (ii) is true since by (i) and (2.1) we have

n n
D 4 P(X *Y) -P( U IX i *YI) E £P(X i Y )

Now consider (iii) when n-n2. From (i), the triangle inequality for d,

b and the independence, we have

D(d(1,X2),(YlY 2)) (d(XlX 2),(YlX 2)) + y'2'(ly)

4 d(X1 ,Yl) + d(,Y)

(X2. . . .. .
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Using this inequality and induction yields (iii) for general n.

Under the hypotheses of (iv), it follows by successive conditioning

that P(XcBgx...xB) = E[FI(B )...F (Bn)], and a similar statement holds

for Y. Then using (i), (2.2) and (iii) we have

n
D 4 d(x,y) < E[d(FI. ..Fn, Gl ... G n) E d(FiG d.

i=l

The second inequality in (2.4) follows from (2.3).

The next two results deal with compound Poisson distributions.

Lemma 2.3. If X is CP(a,F) and Y is CP(8,G), with F({O}) = 0 and

G({0}) = 0, then d(X,Y) 4 ja- 8 + (a A )d(FG).

Proof. First consider the case in which a 4 8. Clearly Y is equal in

distribution to YI+ Y2, where YI,Y are independent CP(8-a,G) and

CP(c,G), respectively. Note that the distributions of X and Y2 can be

written as EF N*() and EGN*.) , respectively, where N is a Poisson

random variable with mean a. Then applying the triangle inequality,
n* n

(2.2), (2.1) and Lemma 2.2 (iii) in the form d(F ,G ) • nd(F,G), we

have

N* N*
d(X,Y) 4 d(X,Y2) + d(Y2,YI + Y2) • Ed(F G ) + P(YI* 0)

4 ENd(F,G) + 1 - e < ad(F,G) + 8 - a.

This proves the assertion when a • 8, and a similar proof applies when

a >8.

Lemma 2.4. Suppose X is a random element of S and let

(2.5) p=P(X 0 0) and F(B)=P(X e BIX * 0).

If Z is CP(p,F), then d(X,Z) p2.

Proof. It suffices, by (2.1), to construct X,Z on a common probability

2space such that P(X*Z)4p 2 . To this end, let N,U and Y1,...,Yn be

independent random elements on a common probability space such that N is

. . . . . . .. . . . . . . . . . . .

.* . *.* *.* . - . .. . . . . . . . . . . .

=. . . . . . . .
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a Poisson random variable with mean p, each Y has the distribution F,
i

and P(U =0) (1 - p)ep = 1 - P(U = 1). Define

N
X = (I - I(U = 0, N = 0)) and Z =E Yi.

An easy check shows that X satisfies (2.5), and Z is clearly CP(p,F).

Furthermore,

P(X * Z) = P(X # Z, N = 0) + P(X * Z, N > 2)

P(U = I)P(N = 0) + P(N > 2) = p(l - e- ) ( p2.

This completes the proof.

We end this section by comparing two random elements that have

certain conditional distributions that are equal.

Lemma 2.5. Let X and Y be random elements. If there is a measurable set

A such that P(XEBjXeA) = P(YcBlYeA) for each measurable B, then

(2.6) d(X,Y) < tP(X e A) - P(Y e A)f.

Proof. Let U, V and W be independent random elements on a probability

space. Assume that U is uniform on (0,1) and that V and W take values in

A and A , respectively, and their distributions are P(V c B)

P(X c BIX c A) and P(W c B) = P(X c BIX c AC). Let p and q denote the

respective probabilities in (2.6), and define X = VI(U < p) + WI(U > p)

and Y = VI(U < q) + WI(U > q). Clearly X and Y satisfy the hypotheses

and, moreover, P(X * Y) - P(p A q < U < p V q) =p -qj Thus the

assertion follows by applying (2.1).

3. Proof of Theorem 1

In addition to the notation of Theorem 1, we let G (.)=
p

pF(.)+(-P)60. where 6 is the Dirac measure with unit mass at 0, and
0 0

-.
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we let Y be a random element with distribution E(G *."*Gp(°)) (recall

that pi is random).

To prove (1.3), consider the inequality

n n "
(3.1) d( E XiZ) 4 d( Z X ,Y) + d(Y,Z).

i=l i=l

By the use of successive conditioning, it is clear that

n
P( Z X i c B) = E[Fj*...*Fn(B)], where F,(B) = P(Xi e BIFnI).

i=1

Note that F!(.) = PiFi (-p)6(-), and so d(Fip) = d(FiF) f di"

Then applying (2.2) and Lemma 2.2 (i1), we have

n n
(3.2) d( E Xi,Y) • E[d(F;*...*F', G *...*Gp)] 4 E( E di).

Similarly, using P(ZcB) = E[H *...*H (B)], where the distribution H is

Pn P

CP(p,F), and applying Lemmas 2.1, 2.2 (it) and 2.4, we have

(3.3) d(Y,Z) ( E[d(G *...*G H *...*H )]
Pn 'P l Pn

n n
• E[ E d(G , H 4 E( E p21).

ifl Pi piifl i-

Then combining (3.1) (3.3) yields the assertion (1.3).

n
Now consider the assertion (1.4). Here Z is CP( £ aiF). Let

i=l

UI ,. . . ,Un be independent random elements with the respective

distributions G ...,G a . Then by applications of (3.2), Lemmas 2.1,
01 n

2.2 (iii) and 2.5 (with A = S \ {}), we have

_____~.*** -. *.... . . .



n n n n
d( Z X1,Z) 4- d( Z X,,Y) + d(Y, Z U) + d( Z U1,Z)

n
4 E( E d) + E[d(G *..-*G p, G *..*G )

+ d(G *.*G *Hal*.. .*H )
a a1  a

4 E[ E di+ 1p1  2 ~ +c

i= 1

Finally, to prove (1.5), consider the inequality

n n
(3.4) d( E X11 Z) 4 d( E X1 ,Zl) + d(Z',Z),

1=1 i-i

n
where 2 is CP(a,F) and Z' is mixed CP( E p1,F). By Lemmas 2.1 and 2.3 we

i=l
n

have d(Z',Z) -4 El Z pi- al. Applying this and (1.3) to (3.4) yields

4. A Compound Poisson Approximation for Markovian Occurrences of an

Event

Suppose that Y0,Y,... is a Markov chain with states 0 and 1 that

represent the nan-occurrence and occurrence, respectively, of a certain

event E. Let e - P(Y I = 11y 0 . 0) and p - P(Y 1= 1JY 0 = 1), and assume

that e and p are not zero or one. The stationary distribution of this

Markov chain is

iR(O) (1 - p)/(l - p + c) i(l) = /(l - p + C) .

Consequently, when e is small, then the event E is rare.

Consider the sum N =En Y, which is the number of occurrences ofn i-li

the event E in time n. We assume, for simplicity, that the Markov chain
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is stationary. Isham (1980) and Baker and Serfozo (1983) showed that if

e varies with n such that c + 0 and nc a > 0 as n + c, then N

n

converges in distribution to a random variable Z that is CP(a,F) with

k-i
F({k})= p (1 - p), k > 1. A bound on the rate of this convergence is

given in the following result. Brown (1983) obtained a variation of this

bound by another approach.

Theorem 4.1.

(4.1) d(NnZ) ' Inc - al + c(l + p + cn(2 - p))/(l - p + E).

Proof. Define the random variables

X= - Y, lYr.. Yi+k-ll - i+k) , i=l,...,n,
k=l

X' f kYIY2 ... Yk(l- Yk+l )

k=l

When the Markov chain begins a sojourn in state 1 at time i (a success

run of the event E), then X records the length of that sojourn.

Clearly

L i: P(x i ; 11YO,..',yi1)

(I - Yi) pk(1 - p) = (l -Y

k-i

Fi(k):= P(Xi ' klY 0 ...,Yi Xi ) 1) F(k).

Le n T' - T + X, and considerL n  £titan n n 1.

(4.2) d(N ,Z) 4 d(N ,Tn ) + d(Tn, T + d(T
nn n n) + (TZ).

Clearly

(4.3) d(N n,T n ) ( P(N n T') - P(Yn 1, Yn+l 1) (1)p,
a a . -

oL-

.-

* ft * * ft t f ft ft ft f . t ft ft eft ft f.1
... P ? *.- '.: *~*.. ft*'ft tftftf *. -.:. *.~ ~* * f. *~ *f 'ftP * _.. - .ft-ft. ~ * . -* _ _* ft]



(4.4) d(Tn, T) P(X * 0) P(Y = 1) =(),

and by (1.5)
,%n n

(4.5) d(T ,Z) 2 Ep2 + -I a

ne 2 Epi + El c (l1

i=l i=1

2= nc irC0) + leE (1 - Yi1 l) - a
i--1

< ne i(O) + :nr(l) + Inc - al.

Combining (4.2) - (4.5) yields (4.1).

Remark. Note that the preceding proof applies (1.5) to the auxiliary sum

T instead of to the original sum N One could also apply (1.4) to T,
n nn

but this would yield (4.1) with 2 - p replaced by (2 - p)2 which is

worse.

,. 2"

o-1

.-1
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